Item recommendation is the task of predicting a personalized ranking on a set of items (e.g. websites, movies, products). In this paper, we investigate the most common scenario with implicit feedback (e.g. clicks, purchases). There are many methods for item recommendation from implicit feedback like matrix factorization (MF) or adaptive knearest-neighbor (kNN). Even though these methods are designed for the item prediction task of personalized ranking, none of them is directly optimized for ranking. In this paper we present a generic optimization criterion BPR-Opt for personalized ranking that is the maximum posterior estimator derived from a Bayesian analysis of the problem. We also provide a generic learning algorithm for optimizing models with respect to BPR-Opt. The learning method is based on stochastic gradient descent with bootstrap sampling. We show how to apply our method to two state-of-the-art recommender models: matrix factorization and adaptive kNN. Our experiments indicate that for the task of personalized ranking our optimization method outperforms the standard learning techniques for MF and kNN. The results show the importance of optimizing models for the right criterion.
translated by 谷歌翻译
在多种重要应用中,获得电子系统的准确地面和低洼激发态至关重要。一种用于求解对大型系统缩放的Schr \“ Odinger方程的方法是变异量蒙特卡洛(QMC)。最近引入的深层QMC方法使用以深神经网络代表的Ansatzes,并生成几乎精确的分子解决方案的分子解决方案最多包含几十个电子,并有可能扩展到更大的系统,而其他高度准确的方法不可行。在本文中,我们扩展了一个这样的Ansatz(Paulinet)来计算电子激发态。我们在各种方法上演示了我们的方法小原子和分子,并始终达到低洼状态的高精度。为了突出该方法的潜力,我们计算了较大的苯分子的第一个激发态,以及乙烯的圆锥形交集,Paulinet匹配的结果更昂贵高级方法。
translated by 谷歌翻译